Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging ; 3: 1005848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172603

RESUMO

Muscle mass and force are key for movement, life quality, and health. It is well established that resistance exercise is a potent anabolic stimulus increasing muscle mass and force. The response of a physiological system to resistance exercise is composed of non-modifiable (i.e., age, gender, genetics) and modifiable factors (i.e., exercise, nutrition, training status, etc.). Both factors are integrated by systemic responses (i.e., molecular signaling, genetic responses, protein metabolism, etc.), consequently resulting in functional and physiological adaptations. Herein, we discuss the influence of non-modifiable factors on resistance exercise: age, gender, and genetics. A solid understanding of the role of non-modifiable factors might help to adjust training regimes towards optimal muscle mass maintenance and health.

2.
PLoS One ; 16(7): e0254164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34283863

RESUMO

BACKGROUND: It was shown that single repetition, contraction-phase specific and total time-under-tension (TUT) can be extracted reliably and validly from smartphone accelerometer-derived data of resistance exercise machines using user-determined resistance exercise velocities at 60% one repetition maximum (1-RM). However, it remained unclear how robust the extraction of these mechano-biological descriptors is over a wide range of movement velocities (slow- versus fast-movement velocity) and intensities (30% 1-RM versus 80% 1-RM) that reflect the interindividual variability during resistance exercise. OBJECTIVE: In this work, we examined whether the manipulation of velocity or intensity would disrupt an algorithmic extraction of single repetitions, contraction-phase specific and total TUT. METHODS: Twenty-seven participants performed four sets of three repetitions of their 30% and 80% 1-RM with velocities of 1 s, 2 s, 6 s and 8 s per repetition, respectively. An algorithm extracted the number of repetitions, single repetition, contraction-phase specific and total TUT. All exercises were video-recorded. The video recordings served as the gold standard to which algorithmically-derived TUT was compared. The agreement between the methods was examined using Limits of Agreement (LoA). The Pearson correlation coefficients were used to calculate the association, and the intraclass correlation coefficient (ICC 2.1) examined the interrater reliability. RESULTS: The calculated error rate for the algorithmic detection of the number of single repetitions derived from two smartphones accelerometers was 1.9%. The comparison between algorithmically-derived, contraction-phase specific TUT against video, revealed a high degree of correlation (r > 0.94) for both exercise machines. The agreement between the two methods was high on both exercise machines, intensities and velocities and was as follows: LoA ranged from -0.21 to 0.22 seconds for single repetition TUT (2.57% of mean TUT), from -0.24 to 0.22 seconds for concentric contraction TUT (6.25% of mean TUT), from -0.22 to 0.24 seconds for eccentric contraction TUT (5.52% of mean TUT) and from -1.97 to 1.00 seconds for total TUT (5.13% of mean TUT). Interrater reliability for single repetition, contraction-phase specific TUT was high (ICC > 0.99). CONCLUSION: Neither intensity nor velocity disrupts the proposed algorithmic data extraction approach. Therefore, smartphone accelerometers can be used to extract scientific mechano-biological descriptors of dynamic resistance exercise with intensities ranging from 30% to 80% of the 1-RM with velocities ranging from 1 s to 8 s per repetition, respectively, thus making this simple method a reliable tool for resistance exercise mechano-biological descriptors extraction.


Assuntos
Acelerometria/métodos , Fenômenos Bioquímicos/fisiologia , Exercício Físico/fisiologia , Treinamento de Força/normas , Smartphone , Adulto , Idoso , Algoritmos , Terapia por Exercício/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia
3.
Front Physiol ; 12: 686119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069229

RESUMO

Skeletal muscle is one of the most important tissues of the human body. It comprises up to 40% of the body mass and is crucial to survival. Hence, the maintenance of skeletal muscle mass and strength is pivotal. It is well-established that resistance exercise provides a potent anabolic stimulus to increase muscle mass and strength in men and women of all ages. Resistance exercise consists of mechano-biological descriptors, such as load, muscle action, number of repetitions, repetition duration, number of sets, rest interval between sets, frequency, volitional muscular failure, and range of motion, which can be manipulated. Herein, we discuss the evidence-based contribution of these mechano-biological descriptors to muscle mass and strength.

4.
PLoS One ; 15(7): e0235156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32667945

RESUMO

BACKGROUND: Single repetition, contraction-phase specific and total time-under-tension (TUT) are crucial mechano-biological descriptors associated with distinct morphological, molecular and metabolic muscular adaptations in response to exercise, rehabilitation and/or fighting sarcopenia. However, to date, no simple, reliable and valid method has been developed to measure these descriptors. OBJECTIVE: In this study we aimed to test whether accelerometer data obtained from a standard smartphone placed on the weight stack can be used to extract single repetition, contraction-phase specific and total TUT. METHODS: Twenty-two participants performed two sets of ten repetitions of their 60% one repetition maximum with a self-paced velocity on nine commonly used resistance exercise machines. Two identical smartphones were attached on the resistance exercise weight stacks and recorded all user-exerted accelerations. An algorithm extracted the number of repetitions, single repetition, contraction-phase specific and total TUT. All exercises were video-recorded. The TUT determined from the algorithmically-derived mechano-biological descriptors was compared with the video recordings that served as the gold standard. The agreement between the methods was examined using Limits of Agreement (LoA). The association was calculated using the Pearson correlation coefficients and interrater reliability was determined using the intraclass correlation coefficient (ICC 2.1). RESULTS: The error rate of the algorithmic detection of single repetitions derived from two smartphones accelerometers was 0.16%. Comparing algorithmically-derived, contraction-phase specific TUT against video, showed a high degree of correlation (r>0.93) for all exercise machines. Agreement between the two methods was high on all exercise machines as follows: LoA ranged from -0.3 to 0.3 seconds for single repetition TUT (0.1% of mean TUT), from -0.6 to 0.3 seconds for concentric contraction TUT (7.1% of mean TUT), from -0.3 to 0.5 seconds for eccentric contraction TUT (4.1% of mean TUT) and from -1.9 to 1.1 seconds for total TUT (0.5% of mean TUT). Interrater reliability for single repetition, contraction-phase specific TUT was high (ICC > 0.99). CONCLUSION: Data from smartphone accelerometer derived resistance exercise can be used to validly and reliably extract crucial mechano-biological descriptors. Moreover, the presented multi-analytical algorithmic approach enables researchers and clinicians to reliably and validly report missing mechano-biological descriptors.


Assuntos
Acelerometria/instrumentação , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento de Força , Smartphone , Adulto , Idoso , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Levantamento de Peso/fisiologia , Adulto Jovem
5.
Phys Sportsmed ; 47(1): 85-90, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30252577

RESUMO

OBJECTIVE: Hamstring and patellar tendon autografts are the most frequently-used graft types for anterior cruciate ligament (ACL) reconstruction, with no consensus on their respective effects on thigh muscle strength. The objective of this study was to re-examine isokinetic knee extensor and flexor strength before and after ACL reconstruction with patellar and hamstring tendon grafts using a single-center and a relatively large database, where surgical, rehabilitation and testing procedures were strictly standardized for all patients. METHODS: A total of 464 patients with a unilateral ACL rupture underwent arthroscopic ACL reconstruction with either patellar or hamstring tendon grafts. Isokinetic concentric strength was evaluated prior to surgery and at 5- and 9-month postoperative follow-ups in different patient subgroups (n = 140, 464 and 215, respectively). RESULTS: Knee extensor strength was lower in patients operated with the patellar tendon graft at the 5-month (p < 0.05) but not at the 9-month follow-up. Knee flexor strength was lower in patients operated with the hamstring tendon graft at both postoperative time points (p < 0.05). The prevalence of quadriceps weakness was high (66-91%) in both patient groups at both follow-ups. CONCLUSION: Overall, postoperative recovery of thigh muscle function seems to be better with the patellar than with the hamstring tendon graft due to the fact that both, knee extensor and flexor strength, were more impaired after ACL reconstruction with the hamstring tendon autograft.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Tendões dos Músculos Isquiotibiais/transplante , Joelho/fisiologia , Força Muscular/fisiologia , Ligamento Patelar/transplante , Adulto , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Artroscopia , Feminino , Seguimentos , Humanos , Joelho/cirurgia , Masculino , Debilidade Muscular/fisiopatologia , Músculo Quadríceps/fisiologia , Músculo Quadríceps/fisiopatologia , Coxa da Perna , Transplante Autólogo , Adulto Jovem
6.
Front Physiol ; 9: 1343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337877

RESUMO

We investigated molecular and cellular parameters which set metabolic and mechanical functioning of knee extensor muscles in the operated and contralateral control leg of 9 patients with a chronically insufficient anterior cruciate ligament (ACL; 26.6 ± 8.3 years, 8 males, 1 female) after open reconstructive surgery (week 0), after ambulant physiotherapy under cast immobilization (week 9), succeeding rehabilitation training (up to week 26), and subsequent voluntary physical activity (week 260). Clinical indices of knee function in the operated leg were improved at 52 weeks and remained at a comparable level at week 260. CSA of the quadriceps (-18%), MCSA of muscle fibers (-24%), and capillary-to-fiber ratio (-24%) in m. vastus lateralis from the ACL insufficient leg were lower at week 0 than reference values in the contralateral leg at week 260. Slow type fiber percentage (-35%) and mitochondrial volume density (-39%) were reduced in m. vastus lateralis from the operated leg at weeks 9 and 26. Composition alterations in the operated leg exceeded those in the contralateral leg and, with the exception of the volume density of subsarcolemmal mitochondria, returned to the reference levels at week 260. Leg-specific deterioration of metabolic characteristics in the vasti from the operated leg was reflected by the down-regulation of mitochondrial respiration complex I-III markers (-41-57%) at week 9. After rehabilitation training at week 26, the specific Y397 phosphorylation of focal adhesion kinase (FAK), which is a proxy for mechano-regulation, was elevated by 71% in the operated leg but not in the contralateral leg, which had performed strengthening type exercise during ambulant physiotherapy. Total FAK protein and Y397 phosphorylation levels were lowered in both legs at week 26 resulting in positive correlations with mitochondrial volume densities and mitochondrial protein levels. The findings emphasize that a loss of mechanical and metabolic characteristics in knee extensor muscle remains detectable years after untreated ACL rupture, which may be aggravated in the post-operative phase by the deterioration of slow-oxidative characteristics after reconstruction due to insufficient load-bearing muscle activity. The reestablishment of muscle composition subsequent to years of voluntary physical activity reinforces that slow-to-fast fiber transformation is reversible in humans.

7.
Hum Gene Ther Methods ; 26(5): 181-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26398117

RESUMO

Liver is an attractive organ for gene delivery in order to correct various genetic (metabolic) diseases. Hydrodynamic vein injection of naked DNA/minicircles devoid of viral or plasmid backbones was demonstrated in, for example, murine phenylketonuria to allow sustained therapeutic transduction of hepatocytes. Here we show successful hepatocyte transfusion in domestic small pigs immediately after weaning upon portal vein catheterization and hydrodynamic injection of naked DNA/minicircle vectors expressing the luciferase gene from the CMV or a liver-specific promoter. First, we established a surgical method allowing hydrodynamic portal vein pressurization up to 120 mmHg and infusion of naked DNA in pigs (n = 5) with long-term survival. No acute adverse effects such as changes in liver transaminases or signs of liver cell damage were observed. We then showed efficiency of stable hepatocyte transfection at 10 and 28 days in single experiments (n = 7) where we found that up to 60% of samples (45/75) were polymerase chain reaction (PCR)-positive for minicircle-DNA. Of these samples, 13% of the positive specimen (6/45) showed low but stable luciferase expression when driven by a liver-specific promoter, as well as appropriate copy numbers per diploid genome. In conclusion, we accomplished a safe procedure for stable transfection of liver cells upon hydrodynamic gene delivery using minicircle vectors in small pigs as a prerequisite to potentially treat infants with genetic liver diseases.


Assuntos
DNA/administração & dosagem , Vetores Genéticos/administração & dosagem , Hepatopatias/genética , Hepatopatias/terapia , Doenças Metabólicas/genética , Doenças Metabólicas/terapia , Animais , Cateterismo , Hidrodinâmica , Veia Porta/metabolismo , Suínos , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...